Đề KSCL môn Toán lần 2 Trường THPT Chuyên Vĩnh Phúc

0
17

[Trích dẫn tài liệu]

Cho khối lăng trụ đứng ABC A B C .’ ‘ ‘ có AA a ‘ = , đáy ABC là tam giác vuông cân tại B và AB a = . Tính thể tích V của khối lăng trụ đã cho.

Cho hình vuông ABCD cạnh a, trên đường thẳng vuông góc với mặt phẳng (ABCD) tại A ta lấy điểm S di động không trùng với A . Hình chiếu vuông góc của A lên SB SD , lần lượt là H K, . Tìm giá trị lớn nhất của thể tích khối tứ diện ACHK.

Cho hình chóp S ABC . có đáy ABC là tam giác vuông cân tại B và BC = a  . Cạnh bên SA vuông góc với đáy (ABC). Gọi H K, lần lượt là hình chiếu vuông góc của A lên SB và SC. Thể tích của khối cầu ngoại tiếp hình chóp A.HKCB bằng.

Cho khối lăng trụ đứng ABC A’B’C’ . có đáy là tam giác đều. Mặt phẳng ( A1BC) tạo với đáy góc 30 và tam giác A1BC có diện tích bằng 8. Tính thể tích V của khối lăng trụ đã cho.

Thiết diện của hình trụ và mặt phẳng chứa trục của hình trụ là hình chữ nhật có chu vi bằng 12. Giá trị lớn nhất của thể tích khối trụ bằng.

Cho hình chóp S ABC . có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng (ABC); góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 0 60 . Gọi M là trung điểm của cạnh AB. Khoảng cách từ B đến mặt phẳng (SMC) bằng.

LEAVE A REPLY

Please enter your comment!
Please enter your name here